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Nonlinear gravity-capillary surface waves 
in a slowly varying current 
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The propagation of nonlinear gravity-capillary surface waves in a deep slowly 
varying current is investigated using the conservation equations in the eikonal 
approximation. Graphical comparisons are made between solutions of the wave- 
slope and wavenumber equations for infinitesimal waves and finite amplitude 
waves. Finite amplitude effects are shown to be weaker for small amplitude 
capillary waves than for gravity waves. The 'wave barrier' noted by Gargett & 
Hughes (1972) for infinitesimal gravity waves on a slowly varying current is seen 
to be removed by finite amplitude effects. 

1. Introduction 
In  this note we examine the wave-slope and wavenumber changes that occur 

when a train of deep-water nonlinear gravity-capillary surface waves encounters 
a gradual time-independent variation in surface current. An analysis of this prob- 
lem for gravity waves has recently been made by Crapper (1972), who used the 
method of Whitham (1965a, b )  on a Lagrangian suggested by Lighthill (1967). 
The infinitesimal gravity wave case has been investigated by Longuet-Higgins 
& Stewart (1961), who used a perturbation approach, and by Whitham (1962), 
who used the conservation equations for mass, momentum, and energy in the 
eikonal approximation. The eikonal-conservation-equation method will be used 
in this analysis. 

For simplicity we shall consider only one horizontal space dimension. An exten- 
sion of the analysis to two horizontal dimensions is straightforward. The changes 
in wave slope 6 and wavenumber k for a train of initially uniform waves moving 
into a region of gradually varying surface current can be found from the conditions 
that the frequency of the surface wave, the mean total mass flux and the mean 
total energy flux are constant; that is, 

w = const., (1.1) 



798 D. Holliday 

where CD is the total velocity potential, q(x,t) is the equation of the surface, 
-d(z) is the depth of the current and angular brackets denote averaging over 
the phase of the surface wave; T is the surface tension per unit density. The 
gradual variation of the surface current implies that the total velocity potential 
is 

CD = $+A,  (1.4) 

where 9 is the velocity potential for a surface wave and A is the velocity potential 
for the current 

u(x,z) = anlax. (1.5) 

We assume that U has a negligible depth dependence within several wavelengths 
of the surface; horizontal variations in U are balanced by vertical currents 
which are negligible near the surface.? The mean total energy flux can then be 

where 

- T (2 "/ [ 1 + ( $)2] ') , (1.8) 
ax at 

where - S is a constant current about which variations in U(x,  0) will be measured; 
the condition 

anpt = - *s2 ,  (1.9) 

which follows from Bernoulli's equation, was used in (1.7). Since Fo is propor- 
tional to 3, we obtain - 

F, = const. (1.10) 

This equation and the Doppler relation (Landau & Lifschitz 1959, §67), 

ck + U(x, 0) k = const., (1.11) 

where c is the phase velocity of the surface wave, suffice to determine the varia- 
tions in wave slope and wavenumber. 

7 These conditions can be realized when a steady stream flows over an irregular bed of 
slow variation and great depth (see Lamb 1932, art. 246). Internal wave motion can also 
produce the assumed current (see Defant 1960, chap. XVI). 
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2. Nonlinear waves 

order gives? 
Calculation of ( 1 . 1 1 )  to second order in the wave slope e and (1 .10)  to fourth 

w = cok[ l  + te2a2] + U(x,  0 )  k = const., (2.1) 

where c0 = (g /k  i- TIC)*, (2 .2)  

3 k2T 3 k2T 
a2 = l + -  (2 .3)  2 9  - 2 k 2 ~ - 5 m 7  

and 

7 15 k2T 3 k2T f 2 =  1 + € 2  -+--+-- 
[8 2 g - 2 k 2 T  

For a pure gravity wave (T = 0) ,  equation (2.4) becomes 

F ,  1s2 
- =-- c [co (i + e2) + U(x,  0) ( 1 + $e2)] = const., 
w 2 P  O 

which is the same as the result of Crapper (1972) to O(e4)f. 

3. Infinitesimal waves 
Keeping the lowest order terms in (2 .1 )  and (2.4), one obtains 

w = c 0 k + U ( x , O ) k  (3 .1 )  

(3.2) 1 T k  
and 

-f The E used here is related to the surface displacement ~ ( z ,  8 )  by (Wehausen & Laitone 

q(z, t )  = s p  + €2?/'2' + €3?+3) + . . . , 1960) 

with q(1) = ( l / k )  00s @, 

1 g + k 2 T  
2k g - 2k2T 

cos 2@,  p = -~ 

3 2g2 - gkzT - 30(kZT)' 
cos @+ - cos 3@; 

16k ( g  - 2 k Z T )  ( g  - 3k2T) 1 3 k Z T ( 5 g + 2 k Z T )  
+Is (9 + k2T) ( g  - 2 k 2 T )  

@ is the phase of the surface wave. 

a calculation of the gravity wave dispersion relation to O(e4). 
$ The relation between E and z in Crapper's paper is z = I + €2 + $8, which follows from 
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as the conserved quantities for infinitesimal waves. Longuet-Higgins & Stewart 
(1961) have derived this result for gravity waves (T = 0). The quantity 

(3.3) 

is the group velocity for gravity-capillary waves on a variable surface current 
U ( x ,  0). By subtracting the kinetic and potential energy density of the current 
from the mean total energy density, one obtains 

t c o  + (Tk/c,) + U(x, 0) 

& 2 0 ( C o / k 2 )  (3.4) 

as the mean excess energy density. Consequently, (3.2) becomes the energy theo- 
rem of Rayleigh and Reynolds (Rayleigh 1877; Reynolds 1877) applied to a wave 
on a variable current [mean excess energy flux = mean excess energy density 
x group velocity]. 

For a pure capillary wave (3.1) and (3.2) become 

(Tk3)3 - Sk + SUk = (Tki)* - Sk, 

~ ~ k - * [ # (  TIC)* - S + 6U] = E$ k,Q [#( Tk$ - S]  ; 

(3.5) 

and (3.6) 

e0 and k, are the values of the wave slope and wavenumber where the current 
is - S, and SU is the variation of U about - 8. For S > (Tk,)* a critical current 
variation 

SU, = S - 3(T/4[Sk0 - (TkE)*])* 

k, = 2*T3[Sk0 - (TkE)fr]%. 

(3.7) 

implies that E --f co, and k becomes 

(3.8) 

Since SU, > 0, pure infinitesimal capillary waves are enhanced without bound 
by a positive current variation in contrast to pure infinitesimal gravity waves, 
the unlimited enhancement of which requires a negative or adverse current varia- 
tion 

4. Comparison of nonlinear and infinitesimal solutions 
The differences between the nonlinear or h i t e  amplitude solution (2.1)-(2.7) 

and the infinitesimal wave solution (3.1)-(3.2) are illustrated by figures 1 and 2, 
which show the wave-slope and wavenumber changes as a function of current 
variation for a 20 cm (k = 0.314 cm-l) gravity wave and a 1 cm (k = 6-28 cm-I) 
capillary wave, both of which have an initial slope of 0.1 on a current with S = 25 
cm/s. The infinitesimal gravity wave is amplified and compressed - its wave- 
number increases - as it encounters a negative or adverse current variation. At a 
current variation SU = - 0.401 cm/s, corresponding to zero group velocity, this 
wave can progress no further, and its wave slope becomes arbitrarily large. The 
wavenumber at this point is finite and equal to 0.401 cm-l. The h i t e  amplitude 
gravity wave propagates beyond SU = - 0.401 cm/s with a decreasing rate of 
slope increase as the effect of finite amplitude becomes more pronounced. The 
capillary wave is amplified and expanded -its wavenumber decreases -when it 
encounters a positive current variation. The infinitesimal capillary wave can 
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FIGURE I. (a )  Wave slope and ( b )  wavenumber as a function of current variation for a.n 
incident wave of E = 0.1 and k = 0*134cm-l ( A  = 20cm) on a current of S = 25cm/s-l 
(g = 981 T = 72 dyne ema gm-'). ---, infinitesimal wave theory; -, k i t e  ampli- 
tude theory. 

0'3 t- (0) 
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FIGURE 2. (a )  Wave slope and ( b )  wavenumber 88 a function of current variation for an 
incident wave of E = 0.1 and k = 6.28cm-l (h = 1 cm) on a current of S = 25 cm/s ( g  = 981 
cmr2, T = 72 dynecm2gm-1).--,inhitesimal wave theory;-, finite amplitude theory. 

progress no further than 8U = 1.39 cm/s, where its wave slope becomes arbitrarily 
large and its wavenumber reaches 3.87 cm-l. The finite amplitude capillary wave 
progresses beyond this point. A comparison of figures 2 (a) and (b )  with figures 1 (a)  
and (b )  indicates that the effect of finite amplitude is much less pronounced for 
capillary waves than for gravity waves. This conclusion can also be reached by 
examining (2.1)-(2.7) in the g = 0 and T = 0 limits. 

Gargett & Hughes (1972), in an analysis based on infinitesimal gravity waves, 
have concluded that the weak surface current induced by an internal wave can 
create a 'barrier' to surface waves. Figures I (a) and (6) show that finite ampli- 
tude effects remove this 'wave barrier' and can reduce the amplitude enhance- 
ment considerably below that which would be predicted by an infinitesimal wave 
analysis. 
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